SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arner Anders) ;pers:(Arner Anders);pers:(Ekman Mari)"

Sökning: WFRF:(Arner Anders) > Arner Anders > Ekman Mari

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ekberg, Olle, et al. (författare)
  • An In Vitro Model for Studying Neuromuscular Transmission in the Mouse Pharynx.
  • 2009
  • Ingår i: Dysphagia. - : Springer Science and Business Media LLC. - 1432-0460 .- 0179-051X. ; 24, s. 32-39
  • Tidskriftsartikel (refereegranskat)abstract
    • The muscles of the pharynx are controlled by networks of neurons under the control of specific regions in the brain stem, which have been fairly well studied. However, the transmission between these neurons and the pharyngeal muscles, at the motor end plates, is less well understood. Therefore, an in vitro model for the study of neuromuscular transmission in the pharyngeal muscle of the mouse was developed. Ring preparations from the inferior constrictor and the cricopharyngeus muscles were isolated and mounted for isometric force recording at physiologic temperature. Preparations from the diaphragm and the soleus muscles were examined in parallel. The muscles were stimulated at supramaximal voltage with short tetani at 100 Hz. Following direct stimulation of the muscle fibers, using a longer pulse duration, the rate of force development of the pharyngeal muscles was similar to that of the diaphragm and faster than that of the soleus muscle. By varying the duration of the stimulation pulses, conditions where the nerve-mediated activation contributed to a major extent of the contractile responses were identified. Gallamine completely inhibited the nerve-mediated responses. In separate experiments the dose dependence of gallamine inhibition was examined, showing similar sensitivity in the inferior pharyngeal constrictor compared to the diaphragm and soleus muscles. We conclude that reproducible contractile responses with an identifiable nerve-induced component can be obtained from the mouse inferior pharyngeal constrictor. The pharyngeal muscles have contractile characteristics similar to those of the faster diaphragm. The sensitivity to the neuromuscular blocking agent gallamine of the inferior pharyngeal constrictor was in the same concentration range as that of the diaphragm and soleus muscles.
  •  
2.
  • Ekman, Mari, et al. (författare)
  • Decreased phosphatase activity, increased Ca2+ sensitivity, and myosin light chain phosphorylation in urinary bladder smooth muscle of newborn mice
  • 2005
  • Ingår i: Journal of General Physiology. - : Rockefeller University Press. - 0022-1295 .- 1540-7748. ; 125:2, s. 187-196
  • Tidskriftsartikel (refereegranskat)abstract
    • Developmental changes in the regulation of smooth muscle contraction were examined in urinary bladder smooth muscle from mice. Maximal active stress was lower in newborn tissue compared with adult, and it was correlated with a lower content of actin and myosin. Sensitivity to extracellular Ca2+ during high-K+ contraction, was higher in newborn compared with 3-wk-old and adult bladder strips. Concentrations at half maximal tension (EC50) were 0.57 +/- 0.01, 1.14 +/- 0.12, and 1.31 +/- 0.08 mM. Force of the newborn tissue was inhibited by similar to45% by the nonmuscle myosin inhibitor Blebbistatin, whereas adult tissue was not affected. The calcium sensitivity in newborn tissue was not affected by Blebbistatin, suggesting that noninuscle myosin is not a primary cause for increased calcium sensitivity. The relation between intracellular [Ca2+] and force was shifted toward lower [Ca2+] in the newborn bladders. This increased Ca2+ sensitivity was also found in permeabilized muscles (EC50: 6.10 +/- 0.07, 5.77 +/- 0.08, and 5.55 +/- 0.02 pCa units, in newborn, 3-wk-old, and adult tissues). It was associated with an increased myosin light chain phosphorylation and a decreased rate of dephosphorylation. No difference was observed in the myosin light chain phosphorylation rate, whereas the rate of myosin light chain phosphatase-induced relaxation was about twofold slower in the newborn tissue. The decreased rate was associated with a lower expression of the phosphatase regulatory Subunit MYPT-1 in newborn tissue. The results show that myosin light chain phosphatase activity can be developmentally regulated in mammalian urinary bladders. The resultant alterations in Ca2+ sensitivity may be of importance for the nervous and myogenic control of the newborn bladders.
  •  
3.
  •  
4.
  • Ekman, Mari, et al. (författare)
  • Receptor-induced phasic activity of newborn mouse bladders is inhibited by protein kinase C and involves T-type Ca channels.
  • 2009
  • Ingår i: BJU International. - 1464-4096 .- 1464-410X. ; 104:5, s. 690-697
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE To investigate the mechanisms involved in the phasic contractile activity after muscarinic receptor activation of newborn urinary bladders and to compare neonatal and adult bladders. MATERIALS AND METHODS Detrusor muscle strips were isolated from newborn mice (aged 0-2 days) and compared with preparations from adult mice (aged 10-12 weeks). The effects of an activator (phorbol 12,13-dibutyrate, PDBu) and an inhibitor (GF109203X) of protein kinase C (PKC) on contractions were investigated. T-type Ca(2+) channels were blocked with NiCl(2). RESULTS The newborn urinary bladders responded with prominent phasic contractile activity in response to carbachol (1 microm). GF109203X (3 microm) reduced carbachol-induced force by approximately 60% in the newborn, compared with 30% in the adult. PDBu (1 microm) enhanced the muscarinic receptor-mediated contraction in adult bladder muscle, whereas it completely abolished the responses in the newborn. There was no inhibition after activation with depolarization (high-K(+)) or purinergic agonists (ATP, alpha,beta-methylene ATP). NiCl(2) (>30 microm) inhibited the peak responses to carbachol in the newborn and at 300 microm it completely abolished the phasic contractile response. The responses of the adult bladder muscle were only marginally affected by NiCl(2). CONCLUSIONS Muscarinic receptor stimulation recruits the PKC signalling pathway in both the adult and neonatal urinary bladder. Potent PKC activation is inhibitory on carbachol-induced activation in the newborn and stimulatory in the adult bladder. Furthermore, muscarinic receptor stimulation activates T-type Ca(2+) channels in the newborn, but not the adult bladder.
  •  
5.
  • Ekman, Mari, et al. (författare)
  • Signal transduction pathways of muscarinic receptor mediated activation in the newborn and adult mouse urinary bladder.
  • 2009
  • Ingår i: BJU International. - 1464-4096. ; 103:1, s. 90-97
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE To study the role of M(2) and M(3) muscarinic receptor subtypes, sources of activator Ca(2+), and mechanisms involved in increased force oscillations in muscarinic contractions in the bladders of newborn and adult mice, as in the adult bladder muscarinic M(3) receptors are considered to mediate the main part of bladder contraction, and this has not been established in the newborn bladder. MATERIALS AND METHODS Bladder preparations from newborn (0-2 days) and adult (10-12 weeks) mice were mounted for in vitro force registration and activated with carbachol and high-K(+) solution in the presence of M(3) (4-DAMP 30 nm) or M(2) (methoctramine, 100 nm) receptor antagonists. Thapsigargin (1 microm) or ryanodine (10 microm) were used to inhibit sarcoplasmic reticulum Ca(2+) release. L-NAME (300 microm) and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 microm) were used to inhibit nitric oxide synthase and guanylyl cyclase, respectively. Gap-junction function was inhibited with by 18-beta-glycyrrhetinic acid (18-beta-GA; 0.1-100 microm). Big-conductance (BK) and small-conductance (SK) K(+) channels were inhibited by apamine and charybdotoxin (0.3 microm), respectively. RESULTS Concentration-response relations for carbachol in the presence of 4-DAMP and methoctramine showed that M(3) receptors are the main activating pathway also in the newborn bladder. Neither thapsigargin nor ryanodine influenced the muscarinic responses of the newborn and adult bladders. Carbachol-induced contractions were not influenced by L-NAME or ODQ. The 18-beta-GA inhibited carbachol-induced contractions in both newborn and adult tissue in a similar manner. Apamine and charybdotoxin slightly increased the amplitude of the contractile responses. CONCLUSION These results suggest that in the newborn mouse bladder, as in adult bladders, the M(3) muscarinic receptor subtype is mainly responsible for carbachol-induced contractile responses. The main mechanism for muscarinic receptor-induced activation is influx of Ca(2+) from the extracellular medium, and there seems to be no major contribution of Ca(2+) release from intracellular stores. The phasic contractile activity induced by carbachol in the newborn bladder is not influenced by gap junction inhibition and does not involve SK and BK channels.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (5)
Typ av innehåll
refereegranskat (5)
Författare/redaktör
Andersson, Karl Erik (3)
Eriksson, L (1)
Ekberg, Olle (1)
Fagher, K (1)
visa fler...
Sundman, E. (1)
Malm, R (1)
Wede, Mia (1)
Stakeberg, K (1)
visa färre...
Lärosäte
Lunds universitet (5)
Karolinska Institutet (5)
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy